Computational
Mathematical and Informatics Challenges to
Translating Cardiovascular Models to Clinical Care

Raimond L Winslow
Institute for Computational Medicine
Department of Biomedical Engineering
The Johns Hopkins University
Whiting School of Engineering & School of Medicine
What I Will Talk About
What I Will Talk About

• Biophysical modeling of the cardiac myocyte
What I Will Talk About

• Biophysical modeling of the cardiac myocyte
• Structural imaging and modeling of cardiac anatomy and its variations
What I Will Talk About

• Biophysical modeling of the cardiac myocyte
• Structural imaging and modeling of cardiac anatomy and its variations
• Electrophysiological modeling of cardiac tissue and heart
What I Will Talk About

- Biophysical modeling of the cardiac myocyte
- Structural imaging and modeling of cardiac anatomy and its variations
- Electrophysiological modeling of cardiac tissue and heart
- Along the way, comments and questions relating to personalization of models
Biophysical Modeling of the Cardiac Myocyte
Tipping the Balance

-40 pA difference of inward Ca$^{2+}$ current

Work towards more accurate modeling of membrane currents, transporters, and their regulation.
Ionic Currents: From HH to Markov Models

HH Equations

\[I_{Na}(t) = \bar{G}_{Na} m(t)^3 h(t) [v(t) - E_{Na}(t)] \]

\[\dot{m}(t) = [1 - m(t)] \cdot \alpha_m [v(t)] - m(t) \cdot \beta_m [v(t)] \]

\[\dot{h}(t) = [1 - h(t)] \cdot \alpha_h [v(t)] - h(t) \cdot \beta_h [v(t)] \]

Equivalent Continuous Time Markov Chain

```
\begin{array}{c}
[ m_0 h_1 ] \xleftrightarrow{\frac{3\alpha_m}{\beta_m}} [ m_1 h_1 ] \xleftrightarrow{\frac{2\alpha_m}{2\beta_m}} [ m_2 h_1 ] \xleftrightarrow{\frac{\alpha_m}{3\beta_m}} [ m_3 h_1 ] \\
[ m_0 h_0 ] \xleftrightarrow{\frac{3\alpha_m}{\beta_m}} [ m_1 h_0 ] \xleftrightarrow{\frac{2\alpha_m}{2\beta_m}} [ m_2 h_0 ] \xleftrightarrow{\frac{\alpha_m}{3\beta_m}} [ m_3 h_0 ] \\
\end{array}
```

Closed Non-Inactivated States

Open State

Non-Conducting Inactivated States

Independent Gating of Sub-Units

activation/inactivation processes independent

Experiments show independence doesn’t hold
Time Varying Membrane Potential

\[
\frac{dv(t)}{dt} = -\frac{1}{C_m} \left[\sum_{i \in \text{ion currents}} I^i_{\text{ion}}(t) + \sum_{j \in \text{transporters}} I^j_{\text{tr}}(t) \right]
\]

- \(i\) indexes voltage-gated currents
- \(j\) indexes membrane transporter currents (algebraic functions)
- \(C_m\) is membrane capacitance
- \(v(t)\) is membrane potential

Voltage-Gated Membrane Currents

\[
I^i_{\text{ion}}(t) = G^i P^i_O(t) \left(v(t) - \frac{RT}{zF} \ln \left(\frac{c^i_{\text{ext}}(t)}{c^i_{\text{int}}(t)} \right) \right)
\]

- \(G^i\) is total conductance for current \(i\)
- \(P^i_O(t)\) is open state occupancy probability at time \(t\) for membrane current \(i\)
- \(v(t)\) is membrane potential at time \(t\)
- \(c^i_{\text{ext}}(t)\) and \(c^i_{\text{int}}(t)\) are external and internal concentrations of the ion to which conductance \(i\) is permeable

State Occupancy Probabilities

\[
\frac{dP^i_n(t)}{dt} = \sum_m \left[P^i_m(t) K^i_{mn} - P^i_n K_{nm} \right]
\]

- \(n\) indexes states of current \(i\), \(m\) indexes states connected to state \(n\)

Membrane Transporter Currents

\[
I^j_{\text{tr}}(t)
\]

- \(j\) indexes transporter currents

Time-Varying Concentrations

\[
\frac{dC^k_j(t)}{dt} = -\frac{I^k_{\text{Total}}(t)}{zF V^{eff}_j}
\]

- Time rate of change of concentration of ion \(k\) in compartment \(j\)
- \(I^k_{\text{Total}}(t)\) is total current for ion \(k\)
- \(V^{eff}_j\) is volume of compartment \(j\)
Ca2+ Signaling is Intimately Involved in Cellular Arrhythmias

L-Type Ca2+ Channels (LCCs)

Ryanodine-Sensitive Ca2+ Release Channels (RyRs)

15 nm
Ca$^{2+}$ Signaling is Intimately Involved in Cellular Arrhythmias

Voltage-Dependent Activation (VDI)

L-Type Ca$^{2+}$ Channels (LCCs)

Ryanodine-Sensitive Ca$^{2+}$ Release Channels (RyRs)

Extracellular

Cytosol

Sarcolemma

JSR Membrane

JSR Lumen

Diad

15 nm
Ca$^{2+}$ Signaling is Intimately Involved in Cellular Arrhythmias

Ca-Induced Ca-Release (CICR)

Extracellular \(\longleftrightarrow\) Cytosol \(\longleftrightarrow\) JSR Lumen

- Voltage-Dependent Activation (VDI)
- Ca$^{2+}$-Dependent Inactivation (CDI)
- L-Type Ca$^{2+}$ Channels (LCCs)
- Ryanodine-Sensitive Ca$^{2+}$ Release Channels (RyRs)

Diad

15 nm

Ca$^{2+}$-Induced Ca-Release (CICR)
Ca$^{2+}$ Signaling is Intimately Involved in Cellular Arrhythmias

Ca-Induced Ca-Release (CICR)

- Voltage-Dependent Activation (VDI)
- Ca$^{2+}$-Dependent Inactivation (CDI)
- Voltage-Dependent Independent (VDI)

L-Type Ca$^{2+}$ Channels (LCCs)
Ryanodine-Sensitive Ca$^{2+}$ Release Channels (RyRs)

Diad

Sarcolemma
JSR Membrane

Ca$^{2+}$-$\text{Dependent Inactivation (CDI)}$

15 nm
Ca$^{2+}$ Signaling is Intimately Involved in Cellular Arrhythmias

Ca-Induced Ca-Release (CICR)

- **VDI** is slow and weak
- **CDI** is strong and fast
- LCCs and RyRs are so tightly coupled they gate as a single “macro-channel”
Many Different Properties of Ca$^{2+}$ Signaling Linked With EADs

“Indirect”

| Ca$^{2+}$ extrusion by serca pump |
| Recovery from CDI |
| Re-activation of LCCs |

“Direct”

- Slowed VDI, reduced CDI (LCC mutation - Timothy Syndrome)
- Reduced JSR Ca$^{2+}$ load (serca down-regulation, RyR leak in HF)
- CaMKII phosphorylation of LCCs, (increased mode 2 gating), ischemia & HF
- CaMKII phosphorylation of Na channels, incomplete inactivation, late current
- ROS$_m$ \Rightarrow H$_2$O$_2$ \Rightarrow CaMKII
- PKA phosphorylation of LCCs, increased mode 2 gating

- Drug block of I$_K$’s
- Mutations
 - loss of function mutations I$_{K_s}$ (LQT1), I$_{K_r}$ (LQT2)
 - Incomplete inactivation of I$_{Na}$ (late Na current, LQT3)
Spontaneous RyR Openings, NCX Current, and Delayed Afterdepolarizations (DADS)

DADs Upon Increased JSR Ca2+ Load

Cardiovascular Physiology (Pappano & Wier)

RyR P\textsubscript{0} Increases with JSR Ca2+ Load

Spontaneous RyR Openings, NCX Current, and Delayed Afterdepolarizations (DADS)

The Metabolic Sink Hypothesis

Maack & Bohm (2011) JACC 58(1): 83
ROS-Induced ROS-Oscillations

Loss of ψ_m, Low ATP, Increased P_o K$_{ATP}$ Channels, Conduction Block
Comments & Questions
Comments & Questions

• As we quantify more and more of the biology of the cardiac myocyte, it is becoming clear that there are many routes to cellular arrhythmia, involving many processes
Comments & Questions

- As we quantify more and more of the biology of the cardiac myocyte, it is becoming clear that there are many routes to cellular arrhythmia, involving many processes.
- In light of this, the extent to which the perturbed biology of individuals differ may be large.
Comments & Questions

• As we quantify more and more of the biology of the cardiac myocyte, it is becoming clear that there are many routes to cellular arrhythmia, involving many processes.

• In light of this, the extent to which the perturbed biology of individuals differ may be large.

• Substantial experimental and clinical data link afterdepolarizations to ventricular arrhythmias.
Comments & Questions

• As we quantify more and more of the biology of the cardiac myocyte, it is becoming clear that there are many routes to cellular arrhythmia, involving many processes
• In light of this, the extent to which the perturbed biology of individuals differ may be large
• Substantial experimental and clinical data link afterdepolarizations to ventricular arrhythmias
• How do these cellular arrhythmias trigger ventricular arrhythmias?
Comments & Questions

• As we quantify more and more of the biology of the cardiac myocyte, it is becoming clear that there are many routes to cellular arrhythmia, involving many processes.

• In light of this, the extent to which the perturbed biology of individuals differ may be large.

• Substantial experimental and clinical data link afterdepolarizations to ventricular arrhythmias.

• How do these cellular arrhythmias trigger ventricular arrhythmias?
 • multiple regions of partial EAD synchronization (Sato et al 2009 PNAS 106(9): 2983)
Comments & Questions

• As we quantify more and more of the biology of the cardiac myocyte, it is becoming clear that there are many routes to cellular arrhythmia, involving many processes.

• In light of this, the extent to which the perturbed biology of individuals differ may be large.

• Substantial experimental and clinical data link afterdepolarizations to ventricular arrhythmias.

• How do these cellular arrhythmias trigger ventricular arrhythmias?
 • multiple regions of partial EAD synchronization (Sato et al 2009 PNAS 106(9): 2983)
 • something simpler? - afterdepolarizations arising in electrically isolated tissue (Purkinje fibers, trabecular muscle fibers, viable cells within necrotic regions) propagate into ever larger tissue masses.
Anatomical Modeling of the Heart

Manual Dissections

Quantitative Histology & Fiber Mapping

Sheet Reconstruction

The Auckland Heart Finite Element Model

Microstructure

Diffusion Imaging

DTMRI & Fiber Inclination Angle

Transmural Inclination Angle Histologic & DTMRI Reconstruction

DTMRI-Based Anatomic Reconstruction and Cardiac Computational Anatomy

- 11 normal, 12 failing canine hearts
- 1 normal human heart
- All data available at www.bme.jhu.edu

DTMRI and Sheet Orientation

Average DTMRI φ: -45° and 117°
Experimental φ: Dokos et al 45° and 110°; Ashikaga et al 36° and 116°
Cardiac Atlasing Using the Large Deformation Diffeomorphic Metric Mapping Algorithm (LDDMM)
Cardiac Atlasing Using the Large Deformation Diffeomorphic Metric Mapping Algorithm (LDDMM)

Structural Analysis of the Failing Canine Heart Ex-Vivo

Relative Wall Thickness

Fiber Inclination Angle

Sheet Angle

Top: Normal canine voxel-by-voxel mean values on atlas
Middle: Failing canine voxel-by-voxel mean values on atlas
Bottom: Statistically significant differences (p=.01) between normal and failing populations

Between “Subject” Variability of Fiber Inclination Angle

- Fiber inclination angle (6 hearts) mapped onto atlas
- Sampled multiple corresponding anterior, lateral posterior regions
- Standard deviation about mean across hearts at corresponding locations < 7°

Comments

• Diffusion imaging is the gold standard (ex-vivo)
Comments

- Diffusion imaging is the gold standard (ex-vivo)
- Magnet field strength increasing, new imaging techniques emerging
Comments

- Diffusion imaging is the gold standard (ex-vivo)
- Magnet field strength increasing, new imaging techniques emerging
- While data suggest that the tertiary eigenvector of the diffusion tensor may be the surface normal to cardiac sheets, this has not been proven
• Diffusion imaging is the gold standard (ex-vivo)
• Magnet field strength increasing, new imaging techniques emerging
• While data suggest that the tertiary eigenvector of the diffusion tensor may be the surface normal to cardiac sheets, this has not been proven
• Modeling anatomy and its variations by using 1:1 diffeomorphic mappings to place images into a common coordinate system is a powerful tool for ex-vivo analyses of anatomic remodeling in disease
• Diffusion imaging is the gold standard (ex-vivo)
• Magnet field strength increasing, new imaging techniques emerging
• While data suggest that the tertiary eigenvector of the diffusion tensor may be the surface normal to cardiac sheets, this has not been proven
• Modeling anatomy and its variations by using 1:1 diffeomorphic mappings to place images into a common coordinate system is a powerful tool for ex-vivo analyses of anatomic remodeling in disease
• Root mean square displacement of a water molecule calculated using measured ADCs and imaging times for DTMRI is 10’s of um.
• Diffusion imaging is the gold standard (ex-vivo)
• Magnet field strength increasing, new imaging techniques emerging
• While data suggest that the tertiary eigenvector of the diffusion tensor may be the surface normal to cardiac sheets, this has not been proven
• Modeling anatomy and its variations by using 1:1 diffeomorphic mappings to place images into a common coordinate system is a powerful tool for ex-vivo analyses of anatomic remodeling in disease
• Root mean square displacement of a water molecule calculated using measured ADCs and imaging times for DTMRI is 10’s of um.
• It is therefore unlikely that fiber structure can be measured in the beating heart. Measurements may represent residual fiber strain
• Diffusion imaging is the gold standard (ex-vivo)
• Magnet field strength increasing, new imaging techniques emerging
• While data suggest that the tertiary eigenvector of the diffusion tensor may be the surface normal to cardiac sheets, this has not been proven
• Modeling anatomy and its variations by using 1:1 diffeomorphic mappings to place images into a common coordinate system is a powerful tool for ex-vivo analyses of anatomic remodeling in disease
• Root mean square displacement of a water molecule calculated using measured ADCs and imaging times for DTMRI is 10’s of um.
• It is therefore unlikely that fiber structure can be measured in the beating heart. Measurements may represent residual fiber strain
• Low subject to subject variability of fiber structure may mean that diffeomorphic mapping of atlas fiber structure to individual hearts may be reasonable
High Resolution Heart Reconstruction

Langendorff-Perfused Heart
Ischemia, Hoechst & Mito-Red Labeling

Collect Optical Stack
Repeat in x-y plane
(Optical Cross Section)

Slice & Stack

Two-Photon Imaging &
Microtome Reconstruction

Image Processing &
Volume Reconstruction

High Resolution Heart Reconstruction
Long QT Syndrome 1 (LQT1)

- 34 known mutations of KCNQ1
- LQT1 ⇒ risk for sudden death

Study

- 633 LQT1 Subjects
- Functional characterization of each KCNQ1 mutant
- AP model ionic model based on genotype
- 1-D model of transmural conduction and ECG

Hoefen et al (2012) JAC 60: 2182
Image-Based Modeling for Surgical Ablation Therapy

Patient-Specific Design of Cardiac Ablation Therapy

MRI-Based Anatomical Models of 12 Patient Hearts

Simulations Reveal Optimal Ablation Site per Patient

What do simulations predict re burns outside the predicted/optimal ablation zone?
How can the physician be guided to the right location with error < 5 mm in a beating heart?
Is this practical?

What do simulations predict re burns outside the predicted/optimal ablation zone?
How can the physician be guided to the right location with error < 5 mm in a beating heart?
Is this practical?

Subject to Subject Transmural Molecular Heterogeneity

- 16 replicates
- Local protein controls
- 10% expression change
- 80% power

Transmural Protein Expression 4 Canines, LV Lateral Wall

SERCA2A ~ Δ30%, JSR Ca$^{2+}$ Δ 30%, APD$_{90}$ Δ 50 mSec

NCX1 ~ same

CX43 Δ ~ 40%, CV 60-70 cm/Sec (LV lateral), 45-70 cm/Sec (LV anterior)

Comments & Questions
Comments & Questions

• What can we measure in patients?
Comments & Questions

• What can we measure in patients?
 - We can image shape
Comments & Questions

- What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)
Comments & Questions

- What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

- What we can’t measure in patients
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes

• Is patient-specific EP modeling of the heart to deliver individualized therapy a “massively under-determined” problem?
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes

• Is patient-specific EP modeling of the heart to deliver individualized therapy a “massively under-determined” problem?
 - This question is particularly important in non-structural heart disease
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes

• Is patient-specific EP modeling of the heart to deliver individualized therapy a “massively under-determined” problem?
 - This question is particularly important in non-structural heart disease
 - Ablation therapy study - structure rules
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes

• Is patient-specific EP modeling of the heart to deliver individualized therapy a “massively under-determined” problem?
 - This question is particularly important in non-structural heart disease
 - Ablation therapy study - structure rules
 - LQT study - generic models suffice
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - "Metabolic imaging" - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes

• Is patient-specific EP modeling of the heart to deliver individualized therapy a “massively under-determined” problem?
 - This question is particularly important in non-structural heart disease
 - Ablation therapy study - structure rules
 - LQT study - generic models suffice

• Delivering real, working diagnostics/therapies is a very hard problem with long event horizon that includes FDA
Comments & Questions

• What can we measure in patients?
 - We can image shape
 - We can image regional fibrosis and infarct geometry
 - “Metabolic imaging” - metabolites, regional O_2 consumption
 - genotype (useful if functionally characterized)

• What we can’t measure in patients
 - Fiber and sheet structure
 - Disease-induced, spatial remodeling of cellular and molecular processes

• Is patient-specific EP modeling of the heart to deliver individualized therapy a “massively under-determined” problem?
 - This question is particularly important in non-structural heart disease
 - Ablation therapy study - structure rules
 - LQT study - generic models suffice

• Delivering real, working diagnostics/therapies is a very hard problem with long event horizon that includes FDA
 - Use animal models, where much more can be probed, to test ideas and approaches
Thanks to all who have contributed

<table>
<thead>
<tr>
<th>Myocyte Modeling</th>
<th>Genomics & Proteomics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saleet Jafri</td>
<td>Christina Yung</td>
</tr>
<tr>
<td>Jeremy Rice</td>
<td>Troy Anderson</td>
</tr>
<tr>
<td>Joe Greenstein</td>
<td></td>
</tr>
<tr>
<td>Laura Doyle</td>
<td></td>
</tr>
<tr>
<td>Mark Walker</td>
<td></td>
</tr>
<tr>
<td>Lulu Chen</td>
<td></td>
</tr>
<tr>
<td>Yasmin Hashamboy</td>
<td></td>
</tr>
<tr>
<td>Peggy Foteinou</td>
<td></td>
</tr>
<tr>
<td>Claire Zhou</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitochondrial Modeling</td>
<td>Structural Imaging</td>
</tr>
<tr>
<td>Sonia Cortassa</td>
<td>David Scollan</td>
</tr>
<tr>
<td>An-Chi Wei</td>
<td>Alex Holmes</td>
</tr>
<tr>
<td>Laura Doyle</td>
<td>Pat Helm</td>
</tr>
<tr>
<td>Lufang Zhou</td>
<td>Siamak Ardekani</td>
</tr>
<tr>
<td></td>
<td>Rob Kazmierski</td>
</tr>
<tr>
<td></td>
<td>Aagam Shah</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Collaborators</td>
<td></td>
</tr>
<tr>
<td>Brian O’Rourke</td>
<td></td>
</tr>
<tr>
<td>Miguel Aon</td>
<td></td>
</tr>
<tr>
<td>David Yue</td>
<td></td>
</tr>
<tr>
<td>Eduardo Marban</td>
<td></td>
</tr>
</tbody>
</table>

Work supported by the NHLBI